哥德巴赫猜想吧 关注:6,387贴子:739,098

素阶乘猜想:p = P# - q

只看楼主收藏回复

素阶乘猜想:对于大于5的素数p,存在素数P,q使得p = P# - q
其中P#为素数阶乘,P≥5,q>5


IP属地:浙江1楼2024-03-12 09:44回复
    2024-03-12 09:36:06
    7 = 30 - 23
    11 = 30 - 19 = 210 - 199
    13 = 30 - 17 = 210 - 197 = 2310 - 2297
    17 = 30 - 13 = 210 - 193 = 2310 - 2293 = 30030 - 30013
    19 = 30 - 11 = 210 - 191 = 30030 - 30011
    23 = 30 - 7 = 2310 - 2287
    29 = 210 - 181 = 2310 - 2281 = 510510 - 510481
    31 = 210 - 179
    37 = 210 - 173 = 2310 - 2273
    41 = 2310 - 2269 = 30030 - 29989
    43 = 210 - 167 = 2310 - 2267
    47 = 210 - 163 = 30030 - 29983 = 510510 - 510463
    53 = 210 - 157 = 510510 - 510457
    59 = 210 - 151 = 2310 - 2251 = 510510 - 510451
    61 = 210 - 149 = 510510 - 510449
    67 = 2310 - 2243
    71 = 210 - 139 = 2310 - 2239 = 30030 - 29959
    73 = 210 - 137 = 2310 - 2237
    79 = 210 - 131
    83 = 210 - 127 = 30030 - 29947
    89 = 2310 - 2221
    97 = 210 - 113 = 2310 - 2213
    101 = 210 - 109
    103 = 210 - 107 = 2310 - 2207 = 30030 - 29927
    107 = 210 - 103 = 2310 - 2203 = 510510 - 510403
    109 = 210 - 101 = 30030 - 29921 = 510510 - 510401
    113 = 210 - 97 = 30030 - 29917
    127 = 210 - 83 = 510510 - 510383
    131 = 210 - 79 = 2310 - 2179 = 510510 - 510379
    137 = 210 - 73
    139 = 210 - 71
    149 = 210 - 61 = 2310 - 2161 = 30030 - 29881 = 510510 - 510361
    151 = 210 - 59 = 30030 - 29879
    157 = 210 - 53 = 2310 - 2153 = 30030 - 29873
    163 = 210 - 47 = 30030 - 29867
    167 = 210 - 43 = 2310 - 2143 = 30030 - 29863
    173 = 210 - 37 = 2310 - 2137
    179 = 210 - 31 = 2310 - 2131 = 30030 - 29851 = 510510 - 510331
    181 = 210 - 29 = 2310 - 2129
    191 = 210 - 19 = 510510 - 510319
    193 = 210 - 17 = 30030 - 29837
    197 = 210 - 13 = 2310 - 2113 = 30030 - 29833
    199 = 210 - 11 = 2310 - 2111 = 510510 - 510311
    211 = 2310 - 2099 = 30030 - 29819 = 510510 - 510299
    223 = 2310 - 2087 = 510510 - 510287
    227 = 2310 - 2083 = 30030 - 29803
    229 = 2310 - 2081
    233 = 7858321551080267055879090 - 7858321551080267055878857
    239 = 510510 - 510271
    241 = 2310 - 2069 = 30030 - 29789
    251 = 200560490130 - 200560489879
    257 = 2310 - 2053 = 510510 - 510253
    263 = 510510 - 510247
    269 = 30030 - 29761 = 510510 - 510241
    271 = 2310 - 2039 = 30030 - 29759
    277 = 30030 - 29753 = 510510 - 510233
    281 = 2310 - 2029
    283 = 2310 - 2027 = 510510 - 510227
    293 = 2310 - 2017 = 510510 - 510217
    307 = 2310 - 2003 = 30030 - 29723 = 510510 - 510203
    311 = 2310 - 1999 = 510510 - 510199
    313 = 2310 - 1997 = 30030 - 29717
    317 = 2310 - 1993
    331 = 2310 - 1979 = 510510 - 510179
    337 = 2310 - 1973
    347 = 30030 - 29683
    349 = 9699690 - 9699341
    353 = 510510 - 510157
    359 = 2310 - 1951 = 30030 - 29671
    367 = 30030 - 29663
    373 = 510510 - 510137
    379 = 2310 - 1931
    383 = 510510 - 510127
    389 = 30030 - 29641 = 510510 - 510121
    397 = 2310 - 1913 = 30030 - 29633
    401 = 30030 - 29629
    409 = 2310 - 1901 = 510510 - 510101
    419 = 30030 - 29611
    421 = 2310 - 1889 = 510510 - 510089
    431 = 2310 - 1879 = 30030 - 29599 = 510510 - 510079
    433 = 2310 - 1877 = 510510 - 510077
    439 = 2310 - 1871
    443 = 2310 - 1867 = 30030 - 29587 = 510510 - 510067
    449 = 2310 - 1861 = 30030 - 29581 = 510510 - 510061
    457 = 30030 - 29573
    461 = 30030 - 29569 = 510510 - 510049
    463 = 2310 - 1847 = 30030 - 29567 = 510510 - 510047
    467 = 6469693230 - 6469692763
    479 = 2310 - 1831 = 510510 - 510031
    487 = 2310 - 1823
    491 = 9699690 - 9699199
    499 = 2310 - 1811 = 30030 - 29531


    IP属地:浙江2楼2024-03-12 09:47
    回复
      2025-08-04 20:19:41
      广告
      不感兴趣
      开通SVIP免广告
      请举例说明。


      IP属地:福建3楼2024-03-12 10:07
      收起回复
        接2楼
        503 = 30030 - 29527
        509 = 2310 - 1801
        521 = 2310 - 1789
        523 = 2310 - 1787
        541 = 9699690(19#) - 9699149
        547 = 30030 - 29483
        557 = 2310 - 1753 = 30030 - 29473
        563 = 2310 - 1747
        569 = 2310 - 1741
        571 = 510510(17#) - 509939
        577 = 2310 - 1733 = 30030 - 29453
        587 = 2310 - 1723 = 30030 - 29443
        593 = 30030 - 29437
        599 = 510510(17#) - 509911
        601 = 2310 - 1709 = 30030 - 29429
        607 = 30030 - 29423
        613 = 2310 - 1697
        617 = 2310 - 1693
        619 = 30030 - 29411
        631 = 30030 - 29399
        641 = 2310 - 1669 = 30030 - 29389
        643 = 2310 - 1667 = 30030 - 29387
        647 = 2310 - 1663 = 30030 - 29383
        653 = 2310 - 1657
        659 = 6469693230(29#) - 6469692571
        661 = 223092870(23#) - 223092209
        673 = 2310 - 1637
        677 = 510510(17#) - 509833
        683 = 2310 - 1627 = 30030 - 29347
        691 = 2310 - 1619 = 30030 - 29339
        701 = 2310 - 1609
        709 = 2310 - 1601
        719 = 30030 - 29311
        727 = 2310 - 1583 = 30030 - 29303
        733 = 30030 - 29297
        739 = 2310 - 1571
        743 = 2310 - 1567 = 30030 - 29287
        751 = 2310 - 1559
        757 = 2310 - 1553
        761 = 2310 - 1549 = 30030 - 29269
        769 = 510510(17#) - 509741
        773 = 510510(17#) - 509737
        787 = 2310 - 1523 = 30030 - 29243
        797 = 223092870(23#) - 223092073
        809 = 30030 - 29221
        811 = 2310 - 1499
        821 = 2310 - 1489 = 30030 - 29209
        823 = 2310 - 1487 = 30030 - 29207
        827 = 2310 - 1483
        829 = 2310 - 1481 = 30030 - 29201
        839 = 2310 - 1471 = 30030 - 29191
        853 = 223092870(23#) - 223092017
        857 = 2310 - 1453 = 30030 - 29173
        859 = 2310 - 1451
        863 = 2310 - 1447 = 30030 - 29167
        877 = 2310 - 1433 = 30030 - 29153
        881 = 2310 - 1429
        883 = 2310 - 1427 = 30030 - 29147
        887 = 2310 - 1423
        907 = 30030 - 29123
        911 = 2310 - 1399
        919 = 510510(17#) - 509591
        929 = 2310 - 1381 = 30030 - 29101
        937 = 2310 - 1373
        941 = 510510(17#) - 509569
        947 = 510510(17#) - 509563
        953 = 30030 - 29077
        967 = 30030 - 29063
        971 = 30030 - 29059
        977 = 9699690(19#) - 9698713
        983 = 2310 - 1327
        991 = 2310 - 1319
        997 = 30030 - 29033
        []
        用时 0.01563 秒


        IP属地:浙江5楼2024-03-13 09:02
        回复
          老话说的好,猜想的基本属性——找不到反例。
          对于素数p,怎样找反例呢?
          必须要把小于p的所有素数阶乘P#-p都验算一遍,如果它们都不是素数,才是反例。
          找反例,是一项非常艰巨的工作。50000000以内无反例哦!


          IP属地:浙江6楼2024-03-14 09:57
          收起回复
            若变成p = P# + q又当如何?很难保证有解。
            2024-03-14 22:29:14
            5 = 2 + 3
            7 = 2 + 5
            11 = 6 + 5
            13 = 2 + 11 = 6 + 7
            17 = 6 + 11
            19 = 2 + 17 = 6 + 13
            23 = 6 + 17
            29 = 6 + 23
            31 = 2 + 29
            37 = 6 + 31 = 30 + 7
            41 = 30 + 11
            43 = 2 + 41 = 6 + 37 = 30 + 13
            47 = 6 + 41 = 30 + 17
            53 = 6 + 47 = 30 + 23
            59 = 6 + 53 = 30 + 29
            61 = 2 + 59 = 30 + 31
            67 = 6 + 61 = 30 + 37
            71 = 30 + 41
            73 = 2 + 71 = 6 + 67 = 30 + 43
            79 = 6 + 73
            83 = 30 + 53
            89 = 6 + 83 = 30 + 59
            97 = 30 + 67
            101 = 30 + 71
            103 = 2 + 101 = 6 + 97 = 30 + 73
            107 = 6 + 101
            109 = 2 + 107 = 6 + 103 = 30 + 79
            113 = 6 + 107 = 30 + 83
            127 = 30 + 97
            131 = 30 + 101
            137 = 6 + 131 = 30 + 107
            139 = 2 + 137 = 30 + 109
            149
            151 = 2 + 149
            157 = 6 + 151 = 30 + 127
            163 = 6 + 157
            167 = 30 + 137
            173 = 6 + 167
            179 = 6 + 173 = 30 + 149
            181 = 2 + 179 = 30 + 151
            191
            193 = 2 + 191 = 30 + 163
            197 = 6 + 191 = 30 + 167
            199 = 2 + 197 = 6 + 193
            211 = 30 + 181
            223 = 30 + 193 = 210 + 13
            227 = 30 + 197 = 210 + 17
            229 = 2 + 227 = 6 + 223 = 30 + 199 = 210 + 19
            233 = 6 + 227 = 210 + 23
            239 = 6 + 233 = 210 + 29
            241 = 2 + 239 = 30 + 211 = 210 + 31
            251 = 210 + 41
            257 = 6 + 251 = 30 + 227 = 210 + 47
            263 = 6 + 257 = 30 + 233 = 210 + 53
            269 = 6 + 263 = 30 + 239 = 210 + 59
            271 = 2 + 269 = 30 + 241 = 210 + 61
            277 = 6 + 271 = 210 + 67
            281 = 30 + 251 = 210 + 71
            283 = 2 + 281 = 6 + 277 = 210 + 73
            293 = 30 + 263 = 210 + 83
            307 = 30 + 277 = 210 + 97
            311 = 30 + 281 = 210 + 101
            313 = 2 + 311 = 6 + 307 = 30 + 283 = 210 + 103
            317 = 6 + 311 = 210 + 107
            331
            337 = 6 + 331 = 30 + 307 = 210 + 127
            347 = 30 + 317 = 210 + 137
            349 = 2 + 347 = 210 + 139
            353 = 6 + 347
            359 = 6 + 353 = 210 + 149
            367 = 30 + 337 = 210 + 157
            373 = 6 + 367 = 210 + 163
            379 = 6 + 373 = 30 + 349
            383 = 30 + 353 = 210 + 173
            389 = 6 + 383 = 30 + 359 = 210 + 179
            397 = 30 + 367
            401 = 210 + 191
            409 = 30 + 379 = 210 + 199
            419 = 30 + 389
            421 = 2 + 419 = 210 + 211
            431 = 30 + 401
            433 = 2 + 431 = 210 + 223
            439 = 6 + 433 = 30 + 409 = 210 + 229
            443 = 210 + 233
            449 = 6 + 443 = 30 + 419 = 210 + 239
            457
            461 = 30 + 431 = 210 + 251
            463 = 2 + 461 = 6 + 457 = 30 + 433
            467 = 6 + 461 = 210 + 257
            479 = 30 + 449 = 210 + 269
            487 = 30 + 457 = 210 + 277
            491 = 30 + 461 = 210 + 281
            499
            用时 0.00100 秒


            IP属地:浙江7楼2024-03-14 22:30
            收起回复
              在p = P# - q中,显然q没有小于或等于P的素因子,必然又q>P;由对称性,也必然有p>P。
              用通俗的话讲就是,任意大于5的素数都可以表示成,一个素数阶乘与一个素数的差。
              题外话,大部分的素数都可以表示成,一个素数阶乘与一个素数的和。


              IP属地:浙江8楼2024-03-16 09:29
              收起回复
                猜想的另一个基本属性——还未被证明。
                猜想一旦被证明,就不叫作猜想了,比如陈氏定理等。


                IP属地:浙江9楼2024-03-17 14:56
                回复
                  2025-08-04 20:13:41
                  广告
                  不感兴趣
                  开通SVIP免广告
                  300以内素数的全解,限于篇幅,具体素数显示省略。
                  2024-03-18 09:35:11
                  7 = 5# - {...}
                  11 = 5# - {...} = 7# - {...}
                  13 = 5# - {...} = 7# - {...} = 11# - {...}
                  17 = 5# - {...} = 7# - {...} = 11# - {...} = 13# - {...}
                  19 = 5# - {...} = 7# - {...} = 13# - {...}
                  23 = 5# - {...} = 11# - {...} = 19# - {...}
                  29 = 7# - {...} = 11# - {...} = 17# - {...}
                  31 = 7# - {...}
                  37 = 7# - {...} = 11# - {...} = 19# - {...}
                  41 = 11# - {...} = 13# - {...} = 19# - {...} = 29# - {...}
                  43 = 7# - {...} = 11# - {...} = 19# - {...} = 23# - {...}
                  47 = 7# - {...} = 13# - {...} = 17# - {...} = 19# - {...} = 41# - {...}
                  53 = 7# - {...} = 17# - {...} = 19# - {...} = 41# - {...}
                  59 = 7# - {...} = 11# - {...} = 17# - {...} = 19# - {...} = 37# - {...}
                  61 = 7# - {...} = 17# - {...} = 23# - {...}
                  67 = 11# - {...} = 19# - {...} = 29# - {...} = 47# - {...}
                  71 = 7# - {...} = 11# - {...} = 13# - {...} = 41# - {...}
                  73 = 7# - {...} = 11# - {...} = 29# - {...} = 31# - {...} = 53# - {...}
                  79 = 7# - {...} = 19# - {...} = 23# - {...} = 31# - {...}
                  83 = 7# - {...} = 13# - {...} = 31# - {...} = 79# - {...}
                  89 = 11# - {...} = 31# - {...} = 41# - {...} = 43# - {...} = 53# - {...} = 61# - {...} = 83# - {...}
                  97 = 7# - {...} = 11# - {...} = 19# - {...} = 23# - {...} = 31# - {...} = 47# - {...} = 73# - {...} = 89# - {...}
                  101 = 7# - {...} = 23# - {...} = 29# - {...} = 67# - {...} = 79# - {...} = 89# - {...}
                  103 = 7# - {...} = 11# - {...} = 13# - {...} = 41# - {...} = 89# - {...}
                  107 = 7# - {...} = 11# - {...} = 17# - {...} = 31# - {...} = 37# - {...} = 59# - {...} = 67# - {...}
                  109 = 7# - {...} = 13# - {...} = 17# - {...} = 59# - {...}
                  113 = 7# - {...} = 13# - {...} = 23# - {...} = 67# - {...} = 103# - {...}
                  127 = 7# - {...} = 17# - {...} = 19# - {...} = 23# - {...} = 31# - {...} = 53# - {...} = 67# - {...} = 71# - {...} = 79# - {...}
                  131 = 7# - {...} = 11# - {...} = 17# - {...} = 41# - {...} = 101# - {...}
                  137 = 7# - {...} = 23# - {...} = 41# - {...} = 53# - {...} = 79# - {...} = 103# - {...}
                  139 = 7# - {...} = 19# - {...} = 37# - {...} = 53# - {...} = 101# - {...}
                  149 = 7# - {...} = 11# - {...} = 13# - {...} = 17# - {...} = 29# - {...} = 31# - {...} = 43# - {...} = 89# - {...} = 101# - {...}
                  151 = 7# - {...} = 13# - {...} = 29# - {...} = 37# - {...} = 47# - {...} = 107# - {...} = 149# - {...}
                  157 = 7# - {...} = 11# - {...} = 13# - {...} = 19# - {...}
                  163 = 7# - {...} = 13# - {...} = 37# - {...} = 59# - {...} = 67# - {...}
                  167 = 7# - {...} = 11# - {...} = 13# - {...} = 43# - {...} = 47# - {...} = 59# - {...} = 79# - {...} = 101# - {...}
                  173 = 7# - {...} = 11# - {...} = 29# - {...} = 31# - {...} = 157# - {...}
                  179 = 7# - {...} = 11# - {...} = 13# - {...} = 17# - {...} = 19# - {...} = 29# - {...} = 71# - {...} = 131# - {...}
                  181 = 7# - {...} = 11# - {...} = 19# - {...} = 23# - {...} = 41# - {...} = 73# - {...}
                  191 = 7# - {...} = 17# - {...} = 53# - {...} = 59# - {...} = 73# - {...} = 79# - {...} = 173# - {...}
                  193 = 7# - {...} = 13# - {...} = 29# - {...} = 41# - {...} = 53# - {...}
                  197 = 7# - {...} = 11# - {...} = 13# - {...} = 23# - {...} = 31# - {...} = 41# - {...} = 83# - {...} = 107# - {...} = 151# - {...}
                  199 = 7# - {...} = 11# - {...} = 17# - {...} = 23# - {...} = 67# - {...} = 71# - {...}
                  211 = 11# - {...} = 13# - {...} = 17# - {...} = 31# - {...} = 107# - {...}
                  223 = 11# - {...} = 17# - {...} = 61# - {...} = 127# - {...} = 131# - {...} = 179# - {...} = 181# - {...}
                  227 = 11# - {...} = 13# - {...} = 29# - {...} = 31# - {...} = 41# - {...} = 211# - {...}
                  229 = 11# - {...} = 19# - {...} = 43# - {...} = 53# - {...}
                  233 = 67# - {...} = 149# - {...} = 167# - {...}
                  239 = 17# - {...} = 19# - {...} = 23# - {...} = 37# - {...} = 41# - {...} = 71# - {...} = 79# - {...} = 101# - {...} = 163# - {...}
                  241 = 11# - {...} = 13# - {...} = 19# - {...} = 29# - {...} = 61# - {...} = 71# - {...}
                  251 = 31# - {...} = 41# - {...} = 79# - {...} = 97# - {...} = 113# - {...}
                  257 = 11# - {...} = 17# - {...} = 19# - {...} = 29# - {...} = 31# - {...} = 37# - {...} = 73# - {...} = 97# - {...} = 113# - {...} = 127# - {...} = 167# - {...} = 229# - {...}
                  263 = 17# - {...} = 37# - {...} = 43# - {...} = 61# - {...} = 71# - {...} = 83# - {...} = 107# - {...} = 109# - {...}
                  269 = 13# - {...} = 17# - {...} = 23# - {...} = 31# - {...} = 61# - {...}
                  271 = 11# - {...} = 13# - {...} = 31# - {...} = 59# - {...} = 79# - {...} = 89# - {...}
                  277 = 13# - {...} = 17# - {...} = 29# - {...} = 47# - {...} = 59# - {...} = 89# - {...} = 113# - {...}
                  281 = 11# - {...} = 19# - {...} = 37# - {...} = 43# - {...} = 67# - {...} = 113# - {...} = 139# - {...}
                  283 = 11# - {...} = 17# - {...} = 23# - {...} = 31# - {...} = 37# - {...} = 107# - {...}
                  293 = 11# - {...} = 17# - {...} = 23# - {...} = 31# - {...} = 43# - {...} = 53# - {...} = 103# - {...} = 191# - {...} = 197# - {...}
                  用时 0.05720 秒


                  IP属地:浙江10楼2024-03-18 10:30
                  收起回复
                    如果严格一点来说,您一楼的内容不能算作某一猜想,因为随便一个正常人都能举出几个这样的例子来。
                    您得再加上一个关键条件,如对于所有数(或某类数) 前述条件都能成立才行,或者是符合一楼的内容数有无限多。这样才行。是否这个理儿?


                    IP属地:河南11楼2024-03-19 10:39
                    收起回复
                      作为猜想也无不可,只是不是独立的猜想,而是哥德巴赫猜想的反向的离散点的表达,因为:
                      p = P# - q,
                      即p + q= P# ,颠倒顺序后为P#=p + q
                      P#是偶数,
                      P≥5,q>5
                      p与 q都是素数,
                      即是偶数=素数+素数,这就是哥德巴赫猜想,但是它不是哥德巴赫猜想的全部,只是其中一些离散点的偶数的表达,且
                      p = P# - q是偶数R=Pa+Pb的相反的表达方式,故称其为【哥德巴赫猜想的反向的离散点的表达】,这种表达是有限的,因为P#当P较大时是难以计算的。


                      IP属地:福建12楼2024-03-19 11:15
                      收起回复
                        一个命题,不管真假,其前提条件是不能随便更改的。
                        如果增加条件,或者修改条件,那便是另外一个命题了。这就是所谓的“跑偏”。


                        IP属地:浙江13楼2024-03-19 16:26
                        收起回复
                          山水先生的考虑是正确的!
                          本质上说,P#是一类特定的偶数。
                          p = P# - q,与 P# = p + q,是等价命题。
                          两个表达式蕴含的意义,本质上都是说: 形如P#的偶数都可以表示为:大于5的两个奇素数之和。
                          属于哥德巴赫猜想的子命题。


                          IP属地:上海14楼2024-03-19 17:40
                          收起回复

                            【素阶乘猜想:对于大于5的素数p,存在素数P,q使得p = P# - q】只是哥德巴赫猜想的一部分,因为P#为素数阶乘,中必然存在偶素数2,所以该阶乘必须是偶数,而偶数可以表示为两个奇素数的和的就是哥德巴赫猜想所要表示的。证明了哥德巴赫猜想,就可以推出该结论。反之则不行的。两者是可以同时被证明的。


                            IP属地:湖南15楼2024-03-20 11:39
                            收起回复
                              2025-08-04 20:07:41
                              广告
                              不感兴趣
                              开通SVIP免广告

                              回复 S云淡风清X:先生应该是高校老师,我明知你在炒剩饭,且找不到不当之处,实在是高。不过学生得不到新的思想启发。还是会有一些失落感的。


                              IP属地:湖南16楼2024-03-20 12:33
                              收起回复